Cuarto día (MAT)
Qué es un sistema de ecuaciones
Un sistema de ecuaciones lineales es un conjunto de ecuaciones (lineales) que tienen más de una incógnita. Las incógnitas aparecen en varias de las ecuaciones, pero no necesariamente en todas. Lo que hacen estas ecuaciones es relacionar las incógnitas entre sí.
Qué es resolver un sistema de ecuaciones
Resolver un sistema de
ecuaciones consiste en encontrar el valor de cada incógnita para que se cumplan
todas las ecuaciones del sistema.
X = 1 Y=−1
Para resolver un sistema de ecuaciones necesitamos tener al menos tantas
ecuaciones como incógnitas.
Comprobar
que el resultado dado en este punto corresponde con la solución de la ecuación.
Resolución de sistemas de ecuaciones
Método de sustitución: consiste en despejar o aislar una de las
incógnitas (por ejemplo, x) y sustituir su expresión en la otra ecuación. De
este modo, obtendremos una ecuación de primer grado con la otra incógnita, y.
Una vez resuelta, calculamos el valor de x sustituyendo el valor de y que ya
conocemos.
Método de reducción: consiste en operar entre las ecuaciones como,
por ejemplo, sumar o restar ambas ecuaciones, de modo que una de las incógnitas
desaparezca. Así, obtenemos una ecuación con una sola incógnita.
Método de igualación: consiste en aislar en ambas ecuaciones la
misma incógnita para poder igualar las expresiones, obteniendo así una ecuación
con una sola incógnita.
Veamos la resolución del sistema anterior según los tres métodos.

Como se puede apreciar, el resultado es el mismo independientemente del
método usado.
Qué método usar
Depende de las ecuaciones, por lo que mejor probar con uno y ver si no es
muy difícil. Estudiar las ecuaciones para elegir bien.
Ejercicios Resueltos:
Leonardo Pisano
Más conocido como Fibonacci (El
apodo de Guglielmo (Guillermo), padre de Leonardo, era Bonacci (simple o bien
intencionado). Leonardo recibió póstumamente el apodo de Fibonacci (por filius
Bonacci, hijo de Bonacci)), fue considerado como “el matemático occidental más
talentoso de la Edad Media”. Introdujo el sistema de números árabe-hindú al
mundo occidental en su libro Liber Abaci (Libro del Cálculo), aplicándolo a la
contabilidad comercial, conversión de pesos y medidas, cálculo, intereses,
cambio de moneda, y otras numerosas aplicaciones. En estas páginas describe el
cero, la notación posicional, la descomposición en factores primos, los
criterios de divisibilidad. El libro fue recibido con entusiasmo entre el
público culto, teniendo un impacto profundo en el pensamiento matemático
europeo, incluyó una secuencia de números que hoy se conocen como “números de
Fibonacci”.
Comentarios
Publicar un comentario